
CONSTRUCTING INSTRUCTION TRACES
from

CACHE-FILTERED ADDRESS TRACES (CITCAT)
Charlton D. Rose J. Kelly Flanagan
sharky@byu.edu kelly@cs.byu.edu

Performance Evaluation Laboratory
http://pel.cs.byu.edu

Department of Computer Science
Brigham Young University

Abstract

Instruction traces are useful tools for studying many
aspects of computer systems, but they are difficult to
gather without perturbing the systems being traced.
In the past, researchers have collected instruction
traces through various techniques, including single-
stepping, instruction inlining, hardware monitoring,
and processor simulation. These approaches,
however, fail to produce accurate traces because
they interfere with the processor’s normal execution.

Because processors are deterministic machines, hypothetical components to real-world demands,
their behavior can be predicted if their initial states
and external inputs are known. We have developed
a technique, called “CITCAT,” which exploits this
fact to generate nearly perfect instruction traces
through trace-driven simulation. CITCAT combines
the best features of instruction inlining, hardware
monitoring, and processor simulation to produce
long, accurate instruction traces without perturbing
the system being traced. Because CITCAT
instruction traces are computed, rather than stored,
this hybrid technique delivers not just accurate
traces, but also an extremely efficient trace
compression algorithm.

1. introduction

When studying a component of a computer
system in order to see how it can be improved, it
is often useful to make the system perform a
specific task while recording the activities of the
component. If the recorded data, called a
“trace,” contains enough information to

reproduce the component’s behavior in a
software-based simulator, then that same data
can also be used to simulate the activities of
components which are functionally identical but
implemented differently.

Using trace data to subject a simulated
component to the same sequence of demands
experienced by a real component is called “trace-
driven simulation.” Because trace-driven
simulation makes it possible to subject

it is an extremely useful tool for evaluating
changes to systems before they are implemented.

Computer systems have many traceable
components, but one of the most interesting and
worthwhile components to trace is the CPU. An
instruction trace enables researchers to model
and study many aspects of computer systems.
For example, processor-internal caches can be
simulated, instruction-level parallelism measured,
branch prediction algorithms tested, and dynamic
instruction counts generated. Complete
instruction traces also contain enough data to
construct additional traces, such as memory
activity and disk I/O traces.

In this paper, we will review several
traditional methods that researchers have used to
collect instruction traces. We will describe
several problems associated with these methods
and explain why they have failed, in our opinion,
to produce perfect instruction traces.

http://pel.cs.byu.edu/~sharky
mailto:sharky@byu.edu
mailto:kelly@cs.byu.edu
http://pel.cs.byu.edu
http://www.cs.byu.edu
http://www.byu.edu

We will then describe CITCAT, a technique interrupts can be used to follow — and hence
through which three of these traditional record — the processor’s instruction execution.
approaches, instruction inlining, hardware When these interrupts occur, the interrupt
monitoring, and processor simulation, can be handler records information about the
combined to construct nearly perfect instruction instructions being executed and then returns
traces. After discussing the pros and cons of our processor control to the point where the
hybrid approach, we will conclude with a exception was raised.
statement about past success, work in progress, This strategy is useful for generating user-
and future research goals related to this code instruction traces, but it has several
technique. significant limitations. First of all, the overhead

2. traditional instruction trace-
gathering techniques

Ironically, one of the most useful traces of a
computer system to have is also one of the most
difficult to collect. Many researchers are
frustrated by the fact that if you disturb a
computer system in order to measure it, the
validity of the measurements becomes uncertain
because they are taken from a perturbed system.

This problem is especially prominent when it
comes to gathering perfect instruction traces.
We define a perfect instruction trace as a
continuous record of CPU instruction execution,
including operating system code and context
switches, that has been gathered from an
unperturbed system and is long enough to be
statistically useful. Although many techniques
have been attempted, including single-stepping,
instruction inlining, hardware monitoring, and
processor simulation, all of these approaches
have fallen short of producing perfect instruction
traces. They were either too difficult to
implement correctly or caused unacceptable
perturbations in the system being measured.

2.1. single-stepping and breakpoints

Some researchers have gathered instruction
traces by exploiting debugging features built into
the processor. By enabling the processor’s
single-stepping mode or by setting instruction
breakpoints at each basic block, debugging

of processing an interrupt every instruction or
basic block is expensive, and system performance
will be dramatically degraded as a result. On
many systems, this can mean a slowdown of 100
times or more.

Even if we are willing to wait, the instruction
traces gathered by this technique will reflect the
activities of a degraded system, not the original
system, because instruction-level behavior often
depends on processor speed. The main problem
with single-stepping is that it requires a precious
amount of the processor’s most valuable
resource — time.

Furthermore, because the debug interrupt
handler is so frequently executed, it will always
consume more resources than just processor
time. Repeated execution of the debugging
interrupt handler code will impact many of the
processor’s performance-enhancing caches. For
example, in a virtual memory system, the page
containing the interrupt handler will rarely be
swapped out. Corresponding TLB entries will
probably not be replaced, and first- and second-
level memory caches may contain much of the
code. True, some caches and buffers can be
disabled while the interrupt is being processed,
but this results in the interrupt handler
consuming an even greater share of the CPU’s
time.

One of single-stepping’s biggest challenges is
tracing privileged code, such as the operating
system and kernel, because privileged code
sometimes performs time-critical operations. In
addition, single-stepping cannot be used in

critical sections because the interrupts must be the original system’s behavior. Furthermore, it
disabled. might be difficult to distinguish normal

Unfortunately, there is no easy way to get instruction fetches from speculative execution,
around all of the problems associated with prefetching, and data reads.
single-stepping. In itself, single-stepping is Another issue that must be considered is
inherently self-limiting; it requires the CPU’s buffer size. Although there have been many
direct involvement in the measurement of its own publications of trace-driven studies based on only
activities, resulting in a different sequence of a few millisecond’s worth of instruction
instructions to trace. execution, some researchers are not comfortable

2.2. instruction-inlining

To circumvent the problems of interrupt- enormous amount of storage space. Large
based single-stepping, other researchers [1, 2, 3, storage devices are generally not fast enough to
4] have tried instruction-inlining, a practice in
which machine code designed to record
instruction trace data is inserted into each basic
block of the code. Although this technique 2.4. processor simulation
successfully avoids the overhead of frequent
interrupt processing, it is still subject to many of
the same shortcomings that plagued single-
stepping approaches. Again, because the CPU is
directly involved in its own measurement, its
workload increases, and the resulting
measurements are of a degraded system.

2.3. hardware monitoring

Many processor chips and motherboards can
be monitored by logic analyzers and other
hardware monitors [5, 6, 7, 8, 9, 10, 11]. If a
fast-enough logic analyzer is used, and a large-
enough recording buffer is available, it might be
possible to gather perfect instruction traces
without disturbing the processor’s instruction
execution.

Unfortunately, most processors do not
provide information on the pins that directly
identify the instructions being executed.
Monitoring the system bus for instruction fetch
activity won’t work, either, since most of the
fetches will be satisfied in the first- or second-
level cache. Of course, we can force all
instruction fetches to appear on the bus by
disabling the caches, but this will inevitably alter

drawing conclusions from such small amounts of
data. Yet an instruction trace long enough to be
considered “statistically significant” requires an

record live instruction traces without periodically
losing data or halting the system being traced.

Single-stepping, instruction inlining, and
hardware monitoring all fail to provide perfect
instruction traces because they perturb the
system. If the processor being traced is
simulated in software, however, the system’s
activities, including instruction execution, can be
freely monitored without affecting the
simulation’s outcome.

Although processor simulation shows
promise as a method for generating perfect
instruction traces [12], the procedure can be
overwhelmingly difficult. In order to guarantee
that the simulation is accurate, several
requirements must be fulfilled:

(1) The simulator must execute each instruction
correctly.

(2) The simulator must also consider the
behavior of hardware components
interacting with the processor, including
peripheral devices such as SCSI controllers,
network cards, etc.

(3) The simulator must take into account the
timing of each instruction. This is necessary
so that interrupts caused by external agents
and timer ticks can be processed at precisely

the right moments. filtered bus activity and timing data. This
(4) If the software being simulated requires real- information is later processed by an instruction-

time, continuous user input, such as an level simulator to produce a nearly perfect
interactive application, special instruction trace.
considerations must be made to provide the
simulator with user-generated input. A real
user cannot be used, however, because the
speed of a simulator is extremely slow Because processors are deterministic, finite
compared to that of a real machine, and state machines, instruction-level simulators are
people respond differently to 50 Hz capable of generating accurate instruction traces
machines than to 200 MHz machines. if the initial conditions and external influences are

Obtaining or writing accurate, instruction- instruction trace through instruction-level
level simulators is relatively easy. Software that simulation, at least three records must be
is capable of meeting the above requirements, available:
however, is both difficult to obtain and even
more difficult to implement — especially if
proprietary information about the processor and
connected hardware is unavailable.

3. CITCAT — a hybrid technique for
generating instruction traces

We have found a way to combine software-
based processor simulation, instruction inlining,
and hardware-based bus monitoring to build
accurate instruction traces, or traces that
represent real machines operating under normal,
unperturbed conditions. Our technique is
affectionately named “CITCAT,” an acronym for
“Constructing Instruction Traces from Cache-
filtered Address Traces.” CITCAT combines the
best features of instruction inlining, hardware
monitoring, and processor simulation to produce
a hybrid instruction tracing technique that is
capable of generating extremely long, statistically
accurate instruction traces.

The first step in the CITCAT method is to
pass processor control to a device driver that
outputs the machine’s state to the bus, where it
is received by a hardware monitor. The
processor is then set into full motion as the
hardware monitor continues recording
processor-external events, including cache-

3.1. required data

known. Thus, in order to generate a perfect

(1) The initial processor state, including
registers, flags, TLB entries, etc. must be
known so that the processor can be properly
initialized.

(2) The initial memory state, including the
states of the first- and second-level caches,
must be known in order to properly initialize
the simulated memory subsystem.

(3) A list of processor-external events,
including interrupts, DMA, and timing
information, is needed to simulate external
devices connected to the processor.

Each of these records can be derived from a
specially instrumented, cache-filtered address
trace. We now describe in detail how each of
these records is created.

3.1.1. the initial processor state

The initial processor state can be extracted
from the beginning of an address trace if, at the
beginning of the trace period, that information is
written to the bus. This can be accomplished
through a device driver that is activated at the
very beginning of the trace. When activated, the
driver first disables the caches, or at least sets
them to write-through, and then writes the initial
processor state directly to main memory. A

hardware monitor connected to the bus receives recorded by a logic analyzer without affecting
this information and records it in the trace. the system. DMA events can be extracted from

Because in many systems memory writes do the trace by scanning for values read from
not appear on the bus in the order they are memory which are inconsistent with previous
issued, elements of the processor’s initial state reads and writes to the same locations.
must be written to carefully chosen, unique As mentioned earlier, external events must be
addresses so that they can later be identified in recorded with timing information, or the
the trace. It is best if the processor’s state is simulator will not know when to replay them.
written to addresses that are not used during the This timing information should be expressed in
rest of the trace. units that are meaningful to the simulator:

3.1.2. the initial memory image

In order for the instruction simulator to begin pins that provide this information, so this data
fetching and executing instructions, the can also be recorded by the logic analyzer.
machine’s initial memory state must be known. For peripheral DMA events, timing does not
A complete memory image is not required, need to be precise. This is because DMA events
however, because it is unlikely that every address have a wide window of time in which they can
in main memory will be used. Furthermore, only occur without changing the way they affect the
those memory locations which are read (or processor. This window begins immediately
fetched) before written need to be defined in the after the processor’s last access to memory
initial memory image. locations associated with the DMA event, and

By invalidating the memory caches at the ends just before the processor’s first access to
beginning of the trace, the first reference to each those same locations after the event.
location will appear on the bus and be recorded In cases where asynchronous interrupts are
in the address trace. Afterwards, the trace data generated internally by the processor, a small
can be scanned by a software tool that finds the amount of code that signals the event to the
first occurrence of each address. Of these first hardware monitor must be incorporated into the
occurrences, those which are writes can safely be interrupt handler. For example, because the
ignored, and those which are reads will contain MIPS R4000 chip generates internal timer ticks,
all the data necessary to build the initial memory we have had to include code in the R4000
image. operating system’s timer routine that sends a

3.1.3. the timed event list

Although a processor’s behavior is
deterministic, it can be influenced by many
different kinds of external events, such as
interrupts, I/O, and DMA. A record of these
events, including timing information, must be Once the initial processor state, initial
available to the simulator so that the processor’s memory image, and external events schedule has
reaction can be accurately simulated. been obtained, the following algorithm can be

During address trace collection, most used in an instruction-level processor simulator
processor-external events, such as interrupt to generate very accurate instruction traces:
signals and I/O activity, can be monitored and

namely, number of instructions executed, number
of basic blocks entered, or number of branch
instructions processed. Many processors have

special signal to the bus. This made it possible to
include the timer ticks in the cache-filtered
address trace.

3.2. putting it all together — the CITCAT
instruction simulation algorithm

(1) Initialize the processor with the initial 4.1. weaknesses
processor state, including the program
counter, registers, flags, TLB entries, etc.

(2) Initialize main memory with the initial
memory image.

(3) Execute the instruction at the program
counter. (This includes incrementing the
program counter or setting it to the target of
a taken branch instruction.)

(4) Output trace information for the
instruction just executed.

(5) Check the events schedule to see if it is
time for an external event.

(6) If it’s time for an external event, simulate
it by signaling an interrupt, modifying main
memory, or performing any other
appropriate action.

(7) Go to step 3.

Simulation is the final step in the CITCAT
instruction trace generating technique. Because
this algorithm makes it possible for a simulator to
execute the same instruction sequence as a real,
unperturbed processor, the simulator can
produce a nearly perfect instruction trace.

4. evaluation of the CITCAT
technique

Given an instrumented, cache-filtered address
trace taken from a real computer system, we
have shown how an instruction-level simulator
can be used to reconstruct the original
processor’s behavior. As we have stated earlier,
the result is a nearly perfect instruction trace.
We use the word “nearly” because there are a
few aspects of our hybrid approach which
admittedly introduce small changes into the
processor’s natural behavior. We believe,
however, that the overall impact of these changes
is insignificant and that instruction traces
generated by the CITCAT technique have a very
high degree of accuracy.

In the CITCAT method, caches must be
invalidated at the beginning of the address trace
so that the first reference to each memory
location will appear on the bus. Filling the cache
takes a small amount of time, and this unarguably
affects the behavior of the processor. However,
after a very long run — particularly after the
caches have been refilled — the impact of this
procedure on the processor’s overall behavior is
negligible. If necessary, the affected portion of
the instruction trace can simply be thrown out.

The other reason we have said our
instruction traces are “nearly perfect” is that, for
some processors, a very small amount of code
must be added to the operating system to
accommodate internally generated, asynchronous
interrupts, such as the MIPS R4000's timer tick.
Again, we believe that the impact of this is very
small.

4.2. strengths

On the positive side, the CITCAT procedure
has two very prominent features. Its first and
most important strength is that it produces
accurate instruction traces. The second benefit
is the fact that since the trace is computed, not
stored, an unprecedented measure of trace data
compression can be realized.

4.2.1. accuracy

In the past, it was nearly impossible to
evaluate the integrity of trace-driven simulation
studies because the traces used in the studies
were collected from perturbed systems. Some of
these studies also excluded operating system
code and the effects of task switching. With the
hybrid method we have described in this paper,
the validity of these theories can now be
assessed. The implications of this may be
enormous.

The value of CITCAT instruction traces generated from relatively small amounts of data.
stems from the fact that they are based on the As we outlined earlier, successful implementation
activities of an unperturbed system. These of CITCAT requires three records: two of them
instruction traces include not only user code, but contain the initial state of the system, and the
operating system code as well. Instruction third contains the event list.
execution resulting from interrupt handling, Because the maximum combined size of the
context switching, and user-input processing is initial state records is independent of the
also included in the trace. Our resounding cry is, instruction trace’s length, the storage
“Every instruction executed by the processor, as requirement for these records is negligible. The
the processor runs at full speed and under length of the event list, however, directly affects
normal, unperturbed conditions, appears in the maximum length of the instruction trace
CITCAT traces!” To the best of our knowledge, because the simulator cannot continue after the
this has not been accomplished with traditional list of external events has been exhausted.
trace collection techniques. Fortunately, the ratio of external events to

As more and more people use the CITCAT instructions executed is extremely low. Thus,
technique, nearly perfect instruction traces will CITCAT doubles as a remarkably effective
make it possible for researchers to conduct algorithm for instruction trace compression. Just
accurate, trace driven simulation studies in many imagine using this technique to fit a 100 gigabyte
areas: instruction trace on a single CD-ROM! This may

! measuring instruction-level parallelism of
commercial workloads and operating systems

! observing the effects of context switching on
performance-enhancing processor
components

! testing the effectiveness of various cache
configurations

! analyzing dynamic instruction frequency for
different benchmarks

! testing various branch prediction algorithms
! evaluating power consumption in processor

components
! debugging and validating systems

With nearly perfect instruction traces,
researchers can concentrate on creating accurate
simulation models, rather than worrying about
the validity of their trace data.

4.2.2. trace compression

An unintentional side-effect of the CITCAT
procedure results from the fact that instead of
storing instruction traces, we compute them.
This makes it possible for very long traces to be

eventually be possible.

5. work completed and work in
progress

We have implemented a prototype of
CITCAT on an Intel i486 based system. A
hardware monitor was connected to the
processor address, data, and control lines to
collect all bus transactions. From the collected
trace data we were able to generate an initial
memory image and an event list. For event
timing we used the instruction count signals
available on our special ICE (In-Circuit
Emulator) i486 component. To obtain the initial
state of the processor, we wrote a device driver
that invalidates the internal cache and TLB
contents at the beginning of the trace and writes
the contents of each register to reserved memory
addresses. We used a proprietary, instruction
level simulator to generate an instruction trace,
and then confirmed our results by comparing the
final states of memory generated by the real
processor and the simulator. We found that they
were identical.

[1] A. Borg, R. E. Kessler and D. W. Wall, "Generation Systems MASCOTS, pp. 203-209. SCS 1993.
and Analysis of Very Long Address Traces."
Proceedings of the Seventeenth International
Symposium on Computer Architecture, pp. 270-279. and B. Nelson, "BACH: A Hardware Monitor for
ACM 1990. Tracing Microprocessor-Based Systems."

[2] S.J. Eggers, D. R. Keppel, E. J. Koldinger, and H. M.
Levy, "Techniques for Efficient Inline Tracing on a
Shared-Memory Multiprocessor." Proceedings of [12] Gurindar S. Sohi and Manoj Franklin,
1990 ACM Sigmetrics, pp. 37-45.

[3] C. Stephens, B. Cogswell, J. Heinlein, and G. Palmer,
"Instruction Level Profiling and Evaluation of the IBM for Programming Languages and Operating Systems,
RS/6000." Proceedings of the Eighteenth
International Symposium on Computer Architecture,
pp. 180-189. ACM 1990.

[4] MIPS Computer Systems, Inc. RISCompiler
Languages Programmer's Guide. MIPS 1988.

[5] Douglas W. Clark, "Cache Performance in the
VAX-11/780." ACM Transactions on Computer
Systems, February 1983, vol. 1 no. 1, pp. 24-37.

[6] Douglas W. Clark and Joel S. Emer, "Performance of
the VAX-11/780 Translation Buffer: Simulation and
Measurement." ACM Transactions on Computer
Systems, February 1985, vol. 3 no. 1, pp. 31-62.

[7] D. Nagle, R. Uhlig, T. Stanley, S. Sechrest, T. Mudge,
and R. Brown, "Design Tradeoffs for
Software-Managed TLBs." Proceedings of the
Twentieth International Symposium on Computer
Architecture, pp. 27-38. ACM 1993.

[8] Josep Torrellas, Anoop Gupta, and John Hennessy,
"Characterizing the Caching and Synchronization
Performance of a Multiprocessor Operating System."
Proceedings of the Fifth International Conference on
Architectural Support for Programming Languages

and Operating Systems, pp. 162-174. ACM 1992.

[9] J. Kelly Flanagan, Brent E. Nelson, James K
Archibald, and Knut Grimsrud, "BACH: BYU
Address Collection Hardware, The Collection of
Complete Traces." Proceedings of the Sixth
International Conference on Modeling Techniques
and Tools for Computer Performance Evaluation, pp.
128-137. 1992.

[10] J. Kelly Flanagan, Brent E. Nelson, James K
Archibald, and Knut Grimsrud, "Incomplete Trace
Data and Trace Driven Simulation." Proceedings of
the International Workshop on Modeling, Analysis
and Simulation of Computer and Telecommunication

[11] K. Grimsrud, J. Archibald, M. Ripley, K. Flanagan,

Microprocessors and Microsystems, October 1993,
vol. 17 no. 6.

"High-Bandwidth Data Memory Systems for
Superscalar Processors." Proceedings of the Fourth
International Conference on Architectural Support

pp. 53-62. ACM 1991.

Due to the proprietary nature of the collected
trace data and instruction level simulator, further
results from our prototype cannot be published.
To remedy this situation, we are currently
implementing CITCAT on a MIPS R4400-based
computer system. Future plans include an
implementation of CITCAT on the PowerPC
604. We will make the resulting traces and tools
available to the research community.

6. References

