
Department of Computer Science

Brigham Young University

April 1999

Master of Science

A thesis submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

by

Charlton D. Rose

CITCAT: CONSTRUCTING INSTRUCTION TRACES FROM

CACHE-FILTERED ADDRESS TRACES

Copyright 1999 Charlton D. Rose

All Rights Reserved

BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a thesis submitted by

Charlton D. Rose

This thesis has been read by each member of the following graduate committee and by
majority vote has been found to be satisfactory.

Robert Preece BurtonDate

Bryan S. MorseDate

J. Kelly Flanagan, ChairDate

BRIGHAM YOUNG UNIVERSITY

As chair of the candidate's graduate committee, I have read the thesis of Charlton D. Rose
in its final form and have found that (1) its format, citations, and bibliographical style are
consistent and acceptable and fulfill university and department style requirements; (2) its
illustrative materials including figures, tables, and charts are in place; and (3) the final
manuscript is satisfactory to the graduate committee and is ready for submission to the
university library.

Nolan F. Mangelson
Associate Dean,
College of Physical and Mathematical Sciences

Accepted for the College

Scott N. Woodfield
Graduate Coordinator

Accepted for the Department

J. Kelly Flanagan
Chair, Graduate Committee

Date

ABSTRACT

CITCAT: CONSTRUCTING INSTRUCTION TRACES FROM

CACHE-FILTERED ADDRESS TRACES

Charlton D. Rose

Department of Computer Science

Master of Science

Traces are valuable to computer architects because they allow researchers to

subject hypothetical systems to real workloads using trace-driven simulation. An

instruction trace is a record of a processor's instruction-level activity, including the

opcode and operands of each instruction. In general, traces affected by the tracing

process have limited utility. However, instruction traces are nearly impossible to collect

without perturbing the system being traced.

In the past, researchers have taken several approaches towards collecting traces,

such as (trap based) single stepping, inlining, hardware monitoring, and processor

simulation. These approaches fail to produce accurate traces because they interfere with

the processor's normal execution or are too difficult to implement correctly.

Because processors are deterministic machines, their behavior can be predicted if

their initial states and external inputs are known. CITCAT is a procedure that exploits

this fact to generate nearly perfect instruction traces using trace-driven simulation.

CITCAT combines the best features of traditional tracing techniques to produce long,

accurate instruction traces from cache-filtered address traces (CATs), which can easily be

collected without perturbing the system being traced.

Successful implementations of CITCAT require a processor simulator, the ability

to initialize it with the state of an actual machine, and the ability to simulate a realistic

sequence of asynchronous events. The simulator is initialized with an initial machine

state (IMS) image, while events are simulated according to an asynchronous event

schedule (AES). Both of these records are extracted from a single CAT. Because the

simulator replays the instruction sequence executed by the original processor that

produced the CAT, it is possible to convert the CAT into any type of system trace.

The feasibility of CITCAT is demonstrated through an implementation on a MIPS

R4400 microprocessor based system. System-specific challenges are overcome with

system-specific solutions, and efforts to generate instruction traces are ultimately

successful. An R4400 CITCAT driver and other operating system patches, and how they

enable the generation of IMS and AES records, are described.

Because CITCAT instruction traces are computed, rather than stored, CITCAT

has potential for development as an extremely efficient, lossless trace compression

algorithm.

ACKNOWLEDGMENTS

Thanks to Kelly, my advisor, for guiding me through many grad school

challenges, and to my colleagues in the lab, who made my work environment fun.

Thanks also to Tandem Computer, Inc., who funded and supported the CITCAT project.

Most of all, I would like to thank my lovely wife, Linda, who inspired me to get

the work done and kept me from going crazy.

TABLE OF CONTENTS

203.4. Summary. .

183.3. Generating the Asynchronous Event Schedule. .

163.2. Generating the Initial Machine State. .

153.1. The Cache-filtered Address Trace (CAT). .

13

CHAPTER 3 —

CITCAT, A HYBRID APPROACH .

102.5. Summary. .

92.4. Processor Simulation. .

82.3. Hardware Monitoring. .

72.2. Inlining .

52.1. Trapping .

5

CHAPTER 2 —

"LEGACY" APPROACHES .

1

CHAPTER 1 —

INTRODUCTION .

viii

39REFERENCES .

37

CHAPTER 6 —

CONCLUSION .

345.3. Trace Compression. .

335.2. Speed Dilation .

315.1. The CAT/IT Ratio. .

31

CHAPTER 5 —

ANALYSIS OF CITCAT ON R4400-BASED SYSTEM

294.7. Summary. .

284.6. Count Register .

274.5. DMA .

264.4. Device Register I/O. .

254.3. Asynchronous Interrupts. .

244.2. Generating the AES. .

234.1. Generating the IMS. .

23

CHAPTER 4 —

FROM THEORY TO PRACTICE: CITCAT ON A MIPS R4400

MICROPROCESSOR-BASED SYSTEM .

ix

CHAPTER 1

INTRODUCTION

New design strategies for computer systems are often evaluated through

software-based simulation in order to determine whether they are worthy of

implementation. During simulation, researchers attempt to subject the simulated system

to realistic demands, and then monitor the system's response to those conditions. Data

gathered from the simulation is then used to identify strengths and weaknesses in the

hypothetical system.

If the simulation is accurate, then the usefulness of the results depends on the

plausibility of the test cases. Because of this, most researchers prefer test cases that are

based on actual observations. These test cases can be obtained by measuring and

recording the properties of an actual system as it operates under the desired conditions.

The resulting data sequences, or traces, can then be used to measure the response of the

hypothetical system to non-hypothetical operating conditions. This method of

experimentation is called trace driven simulation.

Trace-driven simulation is a well-used and well-accepted experimental procedure

in computer science. An informal survey of three major conference proceedings has

revealed that

Approximately 23% of the accepted papers at three major conferences

(ISCA 24, ASPLOS VII, and MICRO-30) dealing with computer system

architecture and performance use trace-driven simulation to acquire their

experimental results. . . . Most of the trace data used was representative of

scientific workloads such as the integer and floating point SPEC
1

benchmarks. [From this,] two observations can be made. . . . First, there

is certainly a need for trace data since nearly a quarter of all the work

found worthy of publication at these prestigious conferences use it.

Second, there is a real need for trace data representative of other

workloads such as transaction processing, real time applications,

multimedia applications, teleconferencing, video streams, and

entertainment software such as games [1].

Many features of a system's behavior can be traced, including disk accesses,

network activity, and cache performance. Perhaps the most useful and sought-after type

of trace is the instruction trace, since instruction traces are rich with data about every

aspect of the system and can often be converted into other types of traces.

An instruction trace is a record of a processor's instruction-level activity, listing

the instructions executed as well as the operands of each instruction. Instruction traces

make it possible for researchers to closely examine a processor’s behavior [2, 3, 4],

identify performance bottlenecks [5, 6], and plan architectural revisions [7].

Unfortunately, an accurate instruction trace is one of the most difficult types of

trace to obtain. This is because most of the known processor-tracing techniques have

limitations that compromise the validity of the traces obtained. For example, many

tracing techniques adversely affect the system's overall performance, resulting in trace

data representing a degraded machine rather than the original machine from which the

trace was sought.

This thesis summarizes traditional processor tracing techniques and explains why

traces obtained using these methods are of questionable quality. More importantly,

2

however, this thesis also describes an alternative tracing technique: CITCAT, a hybrid

tracing approach that combines features of traditional tracing techniques — and several

new ideas — to generate accurate and realistic instruction traces. The most significant

feature of CITCAT is that it allows researchers to convert cache-filtered address traces,

which are easy to collect, into accurate instruction traces, which are difficult to collect.

The objective of this thesis is to demonstrate that it is possible to convert

cache-filtered address traces into complete instruction traces. To show this, CITCAT has

been implemented on a MIPS R4400 microprocessor-based computer system.

Implementation details are described, findings from a successful trial run are reported,

and directions for future research are proposed.

3

CHAPTER 2

"L EGACY" A PPROACHES

The following definition is submitted:

A trace is “perfect” if it (a) has been recorded from an unperturbed

system [8], (b) is based on a relevant workload, (c) is continuous (i.e., no

missing sections), and (d) is long enough to be useful in the research

where it is applied.

It may be possible to obtain long, continuous traces from a perturbed system, or even to

concatenate short bursts of traces from an unperturbed system, but neither of these

methods results in “perfect" traces. For may types of studies, it may actually be

impossible to generate traces that can be considered “perfect” for those studies.

However, researchers should attempt to come as close to this goal as possible, since even

slight inaccuracies in trace data can have dramatic impacts on the results of trace-driven

simulation based studies [9, 10, 11, 12, 13].

Many tracing techniques exist and are commonly used, such as trapping, inlining,

hardware monitoring, and processor simulation. However, most methods fail to produce

perfect — or even "nearly perfect" — instruction traces because they usually require the

system's extensive participation in its own tracing, thereby affecting the system's behavior

and workload.

2.1. Trapping

Many processors have integrated, trap-based debugging features that allow them

to operate in "single stepping" mode. In this mode, the processor automatically
5

interrupts the current program after each instruction and transfers control to a designated

debugging routine. After the debugging routine has performed its task, it returns

processor control back to the original program, which is then allowed to execute one

more instruction.

An easy way to generate instruction traces is to configure the debugging routine to

output instruction trace data after each instruction. Single step instruction tracing is

straightforward and relatively easy to implement, but it also has several significant

drawbacks. First, the cost of processing an interrupt between each instruction is

tremendous, and usually becomes a serious performance bottleneck in the system. On

some systems, for example, single stepping can dilate the processor's execution speed by

a factor of 1000 times or more [8]. As a result, instruction traces gathered through this

process reflect the activities of an entirely different, degraded machine.

Furthermore, repeated execution of the debugging routine means that the routine

will always occupy an unfair share of the system's performance-enhancing features, such

as caches and TLBs, resulting in poorer performance for these components, too.

Another limitation of single stepping is that, in many systems, it is difficult to

single-step through certain instruction blocks, such as operating system calls. For

example, single stepping may not be possible in critical sections because interrupts must

be disabled.

There are several varieties of single stepping, not all of which require the

processor to be interrupted after each instruction. However, single stepping — and its

variants — are all plagued by the same defect: they require the processor's extensive

participation in its own tracing.

6

2.2. Inlining

To avoid some of the problems associated with single-stepping, many researchers

[4, 8, 13, 14, 15] have recorded traces using inlining , or code modification techniques.

These techniques are similar to single stepping, except that rather than causing interrupts

between instructions, the software being executed is modified so that it generates its own

trace output. Because this technique avoids most of the overhead associated with

per-instruction interrupt processing, it is significantly better than single step tracing.

Rather than inserting tracing code between each instruction, it is more efficient to

insert extra code at the beginning of each basic block, which reports, in some manner, the

identity of the block being executed. Afterwards, the resulting basic block trace can be

converted into an instruction trace.

Inlining has several advantages over single stepping. First, as mentioned above,

the overhead of frequent interrupt processing is completely avoided, resulting in huge

time savings and, consequently, much better system performance. Second, inlining is

more adaptable to supervised code tracing, making it possible to generate complete

instruction traces.

On the other hand, inlining still carries many of the weaknesses of single stepping.

Assuming, for example, that the average basic block is 6 instructions long [16], adding

just one instruction per block can inflate a program’s size by 17%. This significantly

affects system performance, ultimately affecting the quality of the trace.

Also, even if we were able to determine, from a basic block trace, which

instructions were executed, we would still have difficulty deducing, with complete

certainty, what each of the instructions accomplished. For example, a derived instruction

7

trace might contain a "Load Word " instruction, but the address or contents of that word

might not be apparent. Additionally, because basic blocks are not necessarily atomic

(interrupts may occur within blocks), basic block traces would only allow us to derive

approximate instruction streams.

Like single stepping, the flaws of inline techniques are too obvious to ignore, and

severely limit the value of the traces. Again, because the system is heavily involved in its

own tracing, the processor cannot perform naturally, and the resulting trace is polluted.

2.3. Hardware Monitoring

Many processor chips and motherboards can be monitored by logic analyzers and

other hardware monitors [2, 6, 7, 17, 19, 20, 21]. If a fast-enough hardware monitor is

used, equipped with a sufficiently large recording buffer, it may be possible to record

perfect instruction traces without ever disturbing the system. Unfortunately, it is difficult,

if not impossible, to access real-time, instruction-level information from most processors,

particularly since the required information is not usually signaled at externally accessible

locations in the system [2].

Even if we found a way to access real time, instruction-level information from a

running processor, we would still be challenged by the hardware monitor's limited storage

capacity. The buffers on most hardware monitors are capable of storing perhaps a few

seconds of instruction activity, but an instruction trace long enough to be considered

"statistically significant" should span a much longer period of time [13]. It may be

possible, perhaps, to periodically empty the buffer into a large-capacity secondary storage

8

device [17, 21], but it is unlikely that such a device could accept data at the rate it was

generated.

Still, hardware monitoring has much to offer researchers who are seeking

instruction traces. The CITCAT instruction tracing procedure, described later in this

thesis, depends heavily on the hardware monitor's ability to record system events in real

time, without perturbing the system. As we shall see, CITCAT can reduce the rate at

which data must be recorded, making real time tracing techniques more viable.

2.4. Processor Simulation

Processor simulation is a completely different approach to tracing. By simulating

a processor's behavior in software, it is possible to monitor and record every aspect of the

system without affecting its behavior [22, 23]. If the system is modeled and simulated

correctly, the simulator will be capable of generating "perfect" instruction traces.

Unfortunately, completely perfect system simulation is not an easy goal to reach.

In order to guarantee accurate simulation, several requirements must be fulfilled:

1. The simulator must execute each instruction correctly.

2. The simulator must correctly model the behavior of peripherals connected to

the processor, such as SCSI controllers, network cards, etc.

3. The simulator should take into account the timing of each instruction, so that

internal asynchronous events, such as “timer ticks,” and external events, such

9

as hardware interrupts, can be simulated at precisely the right moments. (This

may require gate-level simulation.)

4. If the software running in a simulated system requires real-time, continuous

interaction with a human, such as in an interactive game, then special

measures must be taken to simulate the user as well. A real user should not be

used because the simulated system will not run at real time speeds [22, 23],

and a human cannot be expected to respond to a slow machine in the same

manner as he would to a real machine.

Obtaining or writing accurate, instruction-level simulators is relatively easy.

Software that is capable of meeting the above requirements, however, is difficult to

obtain and even more difficult to implement — especially when proprietary information

about the processor and connected hardware is unavailable.

2.5. Summary

Several types of instruction tracing techniques have been described. Single

stepping techniques exploit processor-supported, instruction level debugging facilities to

obtain instruction information. Inline techniques alter the software being executed so that

the programs being traced actually assist in their own tracing. Both of these techniques

require significant system perturbation and produce low-grade traces.

Hardware monitoring is useful for extracting system run-time information from

electrical signals visible at hardware interfaces, but there is usually not enough

information to derive an instruction trace directly. Software-based processor simulation,

on the other hand, allows the user to non-intrusively probe every aspect of the system.

10

Unfortunately, complete simulation is difficult when the system must interact with the

world around it.

The remainder of this thesis describes an instruction tracing technique that

combines the best features of "legacy" tracing techniques while avoiding the pitfalls

usually associated with them.

11

CHAPTER 3

CITCAT, A HYBRID APPROACH

A new instruction tracing technique has been developed that combines the best

features of inlining, hardware monitoring, and processor simulation to generate accurate

instruction traces, or traces that characterize real machines operating under normal,

unperturbed conditions. This technique is affectionately named "CITCAT," an

abbreviation for "Constructing Instruction Traces from Cache-filtered Address Traces."

CITCAT is capable of generating long, continuous, and accurate instruction traces from

cache-filtered address traces [24].

CITCAT

Cache-filtered
Address Trace

Instruction Trace

Fig. 1: CITCAT is a procedure that generates full instruction
traces from cache-filtered address traces.

The underlying premise of CITCAT is that processors are deterministic, finite

state machines. In other words, given the state of a processor at time t, and a complete

knowledge of external influences acting on the processor between times t and t + ∆t, it is

13

racesT
ddressA
ache-filteredC
races fromT
nstructionI
onstructingC

possible to predict, with accuracy, the state of the processor at time t + ∆t. Because of

this, a simulator can reproduce the exact behavior of a processor given only two sets of

data:

1. initial machine state (IMS): state of the processor, caches, and main memory

at the beginning of the tracing period

2. asynchronous event schedule (AES): schedule of hardware interrupts, DMA,

and other asynchronous or peripheral events that influence the processor

during tracing

With both of these records, an exact instruction trace can be generated through

processor simulation using the following procedure:

1. Initialize the processor with the initial processor state, including the program

counter, registers, flags, TLB entries, etc.

2. Initialize main memory and caches with the initial memory image.

3. Execute the instruction at the program counter.

4. Record trace data for the instruction just executed.

5. Check the asynchronous event schedule to see if it is time to simulate an

asynchronous event.

6. If it's time for an event, simulate it by changing control registers (indicating

an interrupt), modifying main memory (to simulate DMA), or performing any

other appropriate state modification.

7. If the event schedule still contains future events, return to step 3 and repeat.

Of course, an instruction trace is not very useful unless it represents the workload

of an actual machine. Thus, a mechanism is required to obtain an IMS and AES from a

14

real machine. This implies that CITCAT is a two-phase process: In the first phase, an

IMS and AES is extracted from a real machine, and in the second phase, a simulator is

used to reenact the traced machine's instruction-level behavior.

3.1. The Cache-filtered Address Trace (CAT)

In most systems, the processor is not directly connected to the system's main

memory. Instead, there are usually one or two levels of performance-enhancing caches

in-between. Each cache serves as a "short term memory," in the sense that if a certain

element of data has been handled very recently, it can be found in the cache and recalled

very quickly. Because most of a processor's memory requests involve recently accessed

addresses [25], only a small fraction of these requests actually appears on the main system

bus. Addresses that appear on the bus are called cache-filtered addresses (Fig. 2).

CPU

cache

cache

main memory

Cache-filtered
Address
Trace

15

Fig. 2: Collecting cache-filtered address
traces (CATs). A hardware monitor is
connected to the main system bus,
where cache-filtered memory traffic and
other system events, such as I/O and
DMA, can be observed and recorded.

The term “cache-filtered address trace” (CAT), as it appears in this thesis, is

slightly misleading because it implies we are only interested in addresses. Although there

have been many useful studies based on address traces where the values stored at each

address were irrelevant, CITCAT actually requires that both the addresses and the data be

recorded. Hence, wherever the term "address traces” is used, keep in mind that the data is

important, too.

It is not extremely difficult to connect a hardware monitor to the system bus and

record cache-filtered memory activity [17]. Often, in addition to cache-filtered memory

activity, other types of events will also appear on the bus, such as device I/O, hardware

interrupts, and DMA. The fact that these events can also be captured in a CAT turns out

to be quite useful in Phase II of CITCAT, in particular, for generating the AES.

After making a few minor modifications to the operating system software, prior to

tracing, it is possible to generate a CAT that contains enough information to derive both

the required IMS and AES records. Equipped with this data, one can then use a processor

simulator to transform the cache-filtered address trace into its equivalent instruction trace.

3.2. Generating the Initial Machine State

An initial machine state for CITCAT should represent at least the following

components of the traced system:

1. the state of the processor, including its general purpose registers, control

registers, program counter, etc., and

2. the state of the memory subsystem, including TLBs, caches, and main

memory.

16

For a normal system, it is not likely that all of this information can be derived

from an ordinary CAT. Usually, a special driver must be used to ensure that this data

appears in the CAT during tracing. This CITCAT driver performs three main tasks:

1. signals the hardware monitor to begin tracing,

2. invalidates the caches, and

3. outputs the processor's register state.

The first step is necessary to ensure that the IMS will appear at the beginning of

the trace. Rather than worrying about how to invoke the driver after tracing begins, it is

simply easier to define the driver’s execution as the beginning of the trace. A

begin_tracing signal is easily sent to the hardware monitor by means of a "magic"

uncached store, which the hardware monitor has been configured to recognize.

The second step, invalidating the caches, guarantees that the initial memory image

can be extracted from the trace. If the trace begins with empty caches, then the

processor's first references to each memory address will “miss” in the caches and

therefore appear on the bus. After the trace has terminated, a trace processing program

extracts the initial memory image.

This approach has three advantages. First, it is not necessary to record a complete

memory image, since only the addresses that are actually referenced during the tracing

period will appear in the CAT. Second, addresses that are written before read can be

safely ignored, since the initial values at those addresses will never be used in the

simulation. Finally, by invalidating the caches at the beginning of the trace, the need to

record the state of the caches is eliminated. These three features greatly reduce the

storage requirements of the IMS.

17

In the third step, the processor's registers are output in a manner that ensures they

will be recorded in the CAT. Uncached stores to reserved addresses are suitable for this

purpose and make it easy to extract the processor's state from the trace afterwards.

Different addresses should be chosen for each register to avoid confusion.

It may seem like invoking a driver to perform these three steps would result in

significant system perturbation, thereby devaluing the resulting trace. Certainly, a

procedure as drastic as cache invalidation has a huge impact on system performance.

However, after the system has run for a short period of time, and the caches have warmed

up, the impact of the driver on the overall trace is negligible if the trace is long enough.

Furthermore, since the impact is localized to the beginning of the trace, a purer trace can

be obtained simply by discarding the first part of the trace.

3.3. Generating the Asynchronous Event Schedule

Although an IMS is sufficient to initialize a simulator, an asychronous event

schedule (AES) is required to keep it on track. In other words, if a simulator is going to

recreate the same instruction stream as the original processor that was traced, the

simulator must respond to the same pattern of external influences as was experienced by

the original machine. This requires an accurate external event schedule that the software

can use to simulate these effects.

Depending on the system, a sufficient AES contains many types of events,

including hardware interrupts, DMA, and other external events that can influence the

processor's course. Ideally, each event in an AES should be time-stamped, either

18

implicitly or explicitly, so that the simulator, during execution, can determine the precise

moment to simulate it.

The best technique for integrating an AES into an address trace depends largely

on the architecture of the system being traced, so it is difficult to describe a general

procedure that works for all systems. However, there are several key ideas worth

considering.

1. As mentioned earlier, valuable information about many types of

aynchronous events will appear directly on the bus, and can thus be easily recorded in

a CAT. These events may include hardware interrupts, device I/O, and DMA. If these

events manifest themselves on the bus, it will be possible to scan the CAT for

asynchronous events that effect the processer, so that an AES can be generated directly

from the trace.

2. In many cases, however, this information will be incomplete. For example, it

may be possible to determine that DMA occurred, but the precise time of the DMA may

be uncertain. Unfortunately, obtaining accurate timing information for asynchronous

events is probably the most difficult part of generating an AES. If the timing data isn't

implicitly embedded in the trace, it may be difficult to proceed.

3. Fortunately, most advanced processors provide external status pins that act

as windows into the processor. These pins provide real-time data about the processor's

19

internal state,1 signaling the processor’s response to an interrupt, the number of branch

instructions executed, the processor's current run level (kernel, supervisor, user), etc. [18].

If this data can be helpful in building an AES, then it should be monitored and recorded

concurrently with the CAT.

4. In most cases, it will probably be necessary to modify the operating system

code so that it reports, in the CAT, responses to certain types of events that cannot easily

be traced any other way.2 Although tracing techniques that require processor involvement

jeopardize the value of the resulting traces, in some situations there may be no choice.

Modifications should certainly be kept to a minimum so that the overall performance

impact on the system is small.

Whatever techniques you use for your particular system, your goal should be to

make sure that enough information will be recorded in the address trace to allow an AES

to be extracted from it. This AES must be detailed enough to recreate the effects of all

events that affect the processor.

3.4. Summary

A cache-filtered address trace (CAT) is easy to record with a hardware monitor

connected to the system bus between the caches and main memory. Properly configured,

20

2 This technique also makes it easier to simulate interrupts which are detectable, as demonstrated in the

next chapter.

1 The information provided on these pins is usually not sufficient to easily derive an instruction trace

directly. If it were, then there would be no need for CITCAT!

the hardware monitor can incorporate into the trace information about the processor's

runtime behavior as well as asynchronous events that affect the system. The operating

system must be configured to output initial machine state (IMS) data and may require

additional modifications to support integration of the asynchronous event schedule (AES)

into the CAT. After the IMS and AES have been acquired, a processor simulator can use

them to recreate the original instruction sequence.

The following chapter describes a successful implementation of CITCAT on a

MIPS R4400 microprocessor-based system, including system-specific challenges that had

to be addressed in order to make CITCAT possible.

21

CHAPTER 4

FROM THEORY TO PRACTICE:

CITCAT ON A MIPS R4400 MICROPROCESSOR-BASED SYSTEM

To demonstrate the viability of CITCAT, I teamed up with Tandem Computers,

Inc. to generate an instruction trace for a MIPS R4400 microprocessor-based system.

Tandem executed most of Phase I of the project, and I completed most of Phase II.

Together, we demonstrated that the CITCAT procedure works — that an instruction trace

in fact can be generated from a carefully prepared cache-filtered address trace. This

section describes system-specific techniques required to implement CITCAT on a MIPS

R4400 microprocessor-based system.

4.1. Generating the IMS

The CITCAT driver for the R4400 system was not complicated and did not

require special considerations beyond what is discussed in the previous chapter. When

invoked, the driver transmitted a begin_tracing signal to the hardware monitor,

invalidated the caches, and output the processor's registers to carefully-chosen addresses.

Uncached stores were used to ensure the data would appear in the trace.3 The driver also

wrote into the CAT the contents of the processor’s 48-entry TLB, so that the simulator's

23

3 Because the processor’s state was changing while it was being written, the driver actually had to project

the processor state at a point near the driver’s return.

TLB could be similarly initialized. After tracing was complete, custom-built trace

processing tools were used to scan the CAT and generate the IMS.

4.2. Generating the AES

Generating the AES was slightly more complicated. The event schedule included

the following (Fig. 3):

1. Asynchronous interrupts , such as from externally-connected hardware, but

also including internal interrupts, such as from the processor's internal timer.

2. Device register I/O , which appeared on the bus as uncached loads and stores

to addresses with the most significant bit set.

3. DMA events, which appeared on the bus as normal memory traffic but were

distinguishable by special bus signals.

4. Count register history, or sequence of values obtained from the processor's

Count register when it was read.

For the R4400 system, each of these event types required special consideration.

CPU

cache

cache

main memory cache-filtered
address

trace

initial machine state

external interrupt schedule

I/O schedule

DMA schedule

co
nv

er
si

on
 to

ol

CPU
simulator
(instruction level)

instruction
trace

(or just about any
other kind of trace)

Count schedule

Fig. 3: CITCAT on a MIPS R4400 microprocessor-based system. A hardware monitor records a
cache-filtered address trace, which is converted into several records. These records are used to
drive a processor simulation that generates the original instruction trace.

24

4.3. Asynchronous Interrupts

In Phase I, to facilitate integration of asynchronous interrupt data into the CAT,

the operating system's general exception handler was modified so that it would output, via

uncached stores, the values of critical processor registers that characterized the interrupts.

These R4400 registers included EPC (address of interrupted instruction), Cause (reason

for interrupt), and several others. A custom counter was also built which tracked, by

means of signals on the processor pins, the number of branch instructions processed

during the trace. By recording the current branch count each time an interrupt occurred, it

was possible to identify the basic block where each interrupt occurred. Although this data

had to be saved in a separate, concurrently collected trace, it was easily merged with the

main CAT after tracing was complete.

During Phase II, as the simulator reenacted the original processor's instruction

sequence, it counted branch instructions to identify basic blocks where interrupts had

occurred. After entering the correct basic block, the simulator then waited until the PC

register equaled the value of the EPC register that had been recorded during that interrupt

in Phase I. When the correct instruction boundary was reached, the simulator modified

the processor’s control registers to evoke an interrupt response. In this manner, the

simulator was able to recreate the original machine’s interrupt response.

Relying on interrupt records embedded in the CAT by the exception handler,

rather than the actual hardware signals that appeared on the bus to cause the interrupt in

25

the first place, greatly simplified the problem of interrupt simulation without sacrificing

too much accuracy.4 This technique allowed us to avoid difficult questions, such as "How

soon after an interrupt signal appears in the trace does the processor respond to it?"

More importantly, this technique also allowed us to simulate interrupts that were

difficult to track with the hardware monitor. For example, the R4400 has an internal

timer which causes regular, asynchronous interrupts. Accurately modeling this timer in a

simulator would have been extremely difficult, since it runs independently of instruction

progress, and perhaps would have required gate-level or pipeline-level simulation.

Obviously, instruction-level simulators are much easier to work with, so modifying the

exception handler to output interrupt records turned out to be an extremely attractive and

effective alternative.

4.4. Device Register I/O

In examining our CAT, we found that the processor occasionally read certain

values from high addresses, and then later read different values from those same

addresses, even though the processor had not written new values and DMA had not

occurred. We learned that these addresses were not actually memory locations, but

peripheral I/O ports, which served as communication channels between the processor and

certain I/O devices. Fortunately, because these ports were always accessed by means of

26

4 The exception handler code responsible for outputting the interrupt information caused a slight instruction

dilation. This is discussed in the next chapter.

uncached loads and stores to a restricted set of addresses, they were quite easy to identify

in the trace.

To support these I/O ports in our simulator, we simply pre-scanned the CAT for

I/O activity and recorded each read or write event in a queue. Then, during simulation,

whenever the processor called for input, the simulator simply consumed a word from the

queue. When it was time for output, on the other hand, the simulator simply compared

the value generated by the processor to the next value in the queue, and then discarded it.

(Although it was not strictly necessary to process output values, doing so helped confirm

that the simulator was behaving correctly.)

Timing issues were unimportant for I/O simulation, since all of the accesses

occurred in a synchronous, well-defined, and predictable order determined by the

processor simulation.

4.5. DMA

For DMA, however, timing turned out to be extremely important, primarily

because DMA events occurred asynchronously with respect to the processor. Obviously,

to simulate DMA, all the simulator had to do was modify the appropriate memory

locations at the correct moments during the simulation. Although simulated DMA timing

did not have to be precise, it was at least necessary to ensure that each event was executed

between the processor’s previous and next accesses to the affected addresses. To

correctly time these events, the simulator scanned the CAT as it ran, searching for DMA

events, and then applied the DMA values to main memory at the correct moments, using

27

contextual clues from the trace to determine when those moments should be. DMA

events were identified by special bus signals associated with them in the CAT.5

4.6. Count Register

The R4400 has a control register, called Count , whose value monotonically

increases at “half the maximum instruction issue rate” [26]. The operating system has

various uses for this register, such as timing, random number generation, etc. Obviously,

it is nearly impossible to correctly model the Count register in an instruction-level

simulator, since its value is directly related to processor timing.

To avoid this problem, the operating system was modified, prior to address

tracing, so that whenever it read a value from the Count register, it also wrote that same

value to an uncached address in memory. As a result, all values obtained from Count

were serialized and logged in the CAT.

Fortunately, there were only a few locations in the kernel where the Count

register was actually read, and since Count is not accessible from non-privileged

code [26], we did not have to worry about other software that might access it.

With the Count register trace extracted from the CAT, it was easy to emulate the

Count register’s behavior during simulation. Whenever Count was read, the simulator

28

5 Before this technique was perfected in the simulator, it was observed that even small scheduling errors

could often cause the processor's instruction stream to quickly diverge from the original. In fact, the

processor almost always ended up executing instructions from uninitialized addresses.

simply consumed the next value from the Count value queue, in much the same manner

as I/O values were consumed.

4.7. Summary

By describing the techniques required to implement CITCAT on an R4400-based

system, this chapter demonstrates that CITCAT requires special considerations for

specific processors and system architectures. Although both an IMS and AES are

required for CITCAT to work, the emphasis of this chapter is on techniques related to

AES generation. This is appropriate since, in general, producing an AES requires much

more effort and painstaking consideration than producing an IMS.

Although implementing CITCAT on an R4400-based system was by no means

easy, the experiment was indeed successful. Both the instruction and cache-filtered

address traces generated by our simulator correlated perfectly with the data recorded from

the original machine, and there was no evidence of divergence between the real and

simulation machines’ behaviors. In fact, a CAT generated by the simulator, which

included memory references, instruction prefetches, device register I/O, interrupts, and

bidirectional DMA, correlated perfectly with the original CAT.

29

CHAPTER 5

ANALYSIS OF CITCAT ON R4400-BASED SYSTEM

The main objective of CITCAT is to generate “nearly perfect instruction traces,”

i.e., instruction traces that tell exactly what the processor in the original, mostly

unperturbed system did during the tracing interval. Although CITCAT may never be

capable of generating perfect instruction traces (because some perturbation is almost

always necessary to support it), we shall see in the coming analysis that it comes quite

close. We shall also discover that CITCAT offers, as a nice side-effect, a remarkable

ability to reduce the storage requirements for instruction traces.

During the tracing interval used in this case study, the processor frequently visited

the operating system's idle loop as it blocked for I/O events.6 However, because

"while(1); " loops are typically uninteresting to most researchers, our final,

regenerated instruction stream omits them, and they are not allowed to influence the

analysis that follows.

5.1. The CAT/IT Ratio

Since CITCAT converts cache-filtered address traces into instruction traces, it is

natural to wonder how much CAT data is required to generate an instruction stream of a

certain length. Fig. 4 illustrates, for the sample trace, the amount of cache-filtered

activity recorded by the hardware monitor as instructions were executed.

31

6 In total, the idle loop accounted for approximately 8.5 million instructions!

instructions executed

Fig. 4: System bus events per instructions executed. Steep slopes correspond to poor cache
performance or increased DMA.

In this plot, horizontal segments indicate periods of perfect cache performance,

while steep segments represent either poor cache performance or increased DMA.

Segment A shows that, initially, the ratio of system bus activity per instruction is very

high. This is to be expected, since the traced system must recover from the initial

disruption caused by CITCAT when tracing began. (Recall that, at the beginning of the

trace, the caches were invalidated and the initial state data was written directly to the

bus.)

32

da
ta

 b
yt

es
 o

n
bu

s

Segment A illustrates cache warm-up.

Segment B illustrates
normal cache activity.

processor state dump

After the caches "warm up," however, the ratio of system bus activity per

instruction improves, as shown in Segment B. Here, the slope levels out to about 0.4

bytes of CAT data per instruction,7 and the rate at which bus activity must be recorded

significantly decreases. Although the poor cache performance in Segment A is

undesirable because it pollutes the instruction trace, it is acceptable because it happens

only once, at the beginning of the trace. It is the behavior of the system after warm-up

that has the greatest impact on the CAT/IT ratio.

5.2. Speed Dilation

As noted earlier, the primary objective of CITCAT is to collect instruction traces

without perturbing the system. In this case study, we found that aside from the initial

disruption required to start CITCAT, non-perturbation was nearly achieved.

The impact of CITCAT on the system was measuring by examining the

instruction trace and counting the extra operations required to support it. Excluding

initialization overhead, the extra processor effort was determined to be just a few

33

7 This rate should not be interpreted to mean that 40% of the executed instructions resulted in cache misses.

The CAT recorded by our hardware monitor included much more than ordinary cache misses. Also worth

considering is the fact that the CAT events were weighted. For example, a single cache miss generated 32

bytes of CAT data, because that's how many bytes were required to refill a single cache line. If the

replace cache line was dirty, however, then that weight doubled, since 32 more bytes had to be written

back. Recall also, in considering the CAT/IT ratio, that the system's idle loop has been excluded from the

computation, even though DMA often occurred while the system was idle.

instructions per interrupt. Since the natural overhead of interrupts was already quite high,

these few extra instructions did not make a significant difference in system performance.

The previous chapter describes modifications to the general exception handler that

caused the processor to output, through uncached addresses, information about each

exception as it occurred. Overall, this modification resulted in 9 extra instructions,

including 6 uncached stores, per interrupt. Because of the position of these instructions

within the interrupt handler, and assuming that the processor's write buffer was never

“backed up,” none of these instructions would have even caused a pipeline stall.

Modifying the operating system to output Count register values resulted in the execution

of 3 additional instructions each time the register was read.

Aside from the initial startup costs, overall system perturbation due to CITCAT

was minor. During the sample tracing period shown in Fig. 4, the operating system

processed 96 interrupts and read from Count 226 times, for a total of 678 extra

instructions, or approximately 0.42% of all the 160,418 (non-idle loop) instructions

executed. Most researchers would find such a small dilation acceptable.

5.3. Trace Compression

The fact that CITCAT traces are computed, rather than stored, means that the

CITCAT procedure has potential for development into an efficient trace storage and

distribution mechanism. Suppose, for example, that we wish to send an instruction trace

to a researcher at a distant location. Assuming that she has already obtained a functional,

CITCAT-ready simulator, all we need to send her is an initial machine state and an event

list. She can then use both of these records to generate the instruction trace.

34

For the R4400 system, the IMS consists of only the processor's registers and an

initial memory image. For the sample trace used in this case study, the IMS required

16,773 (address, data) pairs, or 134,184 bytes of raw, uncompressed data. For long

traces, however, the size of the IMS is probably irrelevant, since the maximum IMS size

is bounded by the size of the machine state, which is governed mostly by the amount of

main memory.

84,430140,408TOTAL (all)
82,181134,184IMS
2,2496,224TOTAL (AES)

2651,780I/O
5231,704interrupts
6651,836DMA
796904Count

COMPRESSEDRAWRECORD

Fig. 5: Raw and compressed data sizes for R4400 CITCAT records.

The event records required to keep an R4400 simulator running are (a) an

asynchronous interrupt schedule, (b) a DMA schedule, (c) a device input queue, and

(d) a Count register history. The raw uncompressed and gzip -compressed sizes for

these records are shown in Fig. 5 (previous page). These figures indicate that the

combined event records will allow the simulator to execute approximately 70 instructions

for each byte of event record data. Assuming that approximately 10 bytes of raw data are

required to store a single instruction trace entry (including the address, instruction, and

operands), these figures suggest 700:1 lower bound for potential instruction trace

35

compression. Note that because gzip is not designed to exploit the structure inherent in

these AES records, actual achievable compression ratios, using optimal representations

for each record to eliminate redundancy, are probably much higher.

36

CHAPTER 6

CONCLUSION

Instruction traces give researchers valuable insights into the performance

characteristics of the systems being traced, but are difficult to acquire without perturbing

the system. Traditional tracing techniques have been used to produce instruction traces,

but the cost of these techniques, in terms of trace accuracy or implementation difficulty,

has generally been unacceptably high. CITCAT is a modern approach to instruction trace

generation that combines features from older techniques, while avoiding or minimizing

disadvantages normally associated with them.

CITCAT utilizes simulation to convert cache-filtered address traces into accurate

and detailed instruction traces. Although a significant performance penalty must be

endured at the beginning of a CITCAT trace, after the system has “warmed up,” the

overall impact of CITCAT on system performance is negligible, and the resulting

instruction traces might be justifiably called “nearly perfect.”

Research on CITCAT is ongoing, and there are still many directions to explore in

this area. CITCAT has been successfully implemented for Intel 80x86 and R4400

processors and hopefully will be developed for additional architectures in the future.

Because CITCAT computes instruction traces, rather than storing them, CITCAT

has great potential for development into an efficient trace storage and distribution

mechanism. Lossless instruction trace compression ratios exceeding 700:1 may

eventually be possible. CITCAT may become the standard for efficiently storing and

distributing high-quality instruction traces.

37

REFERENCES

1. J. Kelly Flanagan: "A national trace collection and distribution resource" (1998).

2. Jeffrey Dean, James E Hicks, Carl A. Waldspurger, William E. Weihl, George

Chrysos: "ProfileMe: hardware support for instruction-level profiling on out-of-order

processors" in Proceedings of the Thirtieth Annual IEEE/ACM International

Symposium on Microarchitecture (1997), pp. 292-302.

3. C. Chekuri , R. Johnson, R. Motwani , B. Natarajan, B. R. Rau, M. Schlansker:

"Profile-driven instruction level parallel scheduling with application to super blocks"

in Proceedings of the 29th Annual IEEE/ACM International Symposium on

Microarchitecture (1996), pp. 58-67.

4. Chris Stephens, Bryce Cogswell, John Heinlein, Gregory Palmer: "Instruction level

profiling and evaluation of the IBM RS/6000" in Proceedings of the Eighteenth

International Symposium on Computer Architecture (ACM 1990), pp. 180-189.

5. Chih-Po Wen: "Improving instruction supply efficiency in superscalar architectures

using instruction trace buffers" in Proceedings of the 1992 ACM/SIGAPP Symposium

on Applied Computing (vol. I): Technological Challenges of the 1990's, pp. 28-36.

6. Douglas W. Clark , Joel S. Emer: "Performance of the VAX-11/780 translation

buffer: simulation and measurement" in ACM Transactions on Computer Systems

(February 1985, vol. 3 no. 1), pp. 31-62.

7. D. Nagle, R. Uhlig, T. Stanley, S. Sechrest, T. Mudge, R. Brown: "Design tradeoffs

for software-managed TLBs" in Proceedings of the Twentieth International

Symposium on Computer Architecture (ACM 1993), pp. 27-38.

39

8. Susan J. Eggers, David R. Keppel, Eric J. Koldinger , Henry M. Levy: "Techniques

for efficient inline tracing on a shared-memory multiprocessor" in Proceedings of the

1990 Conference on Measuring and Modeling of Computer Systems (Performance

Evaluation Review, Special Issue, May 1990, Vol. 18 No. 1), pp. 37-45.

9. J. Kelly Flanagan, Brent E. Nelson, Greg Thompson: "The inaccuracy of

trace-driven simulation using incomplete multiprogramming trace data" in IEEE

International Workshop on Modeling, Analysis and Simulation of Computer and

Telecommunications Systems (MASCOTS Feb. 1996).

10. Richard M. Fujimoto , William C. Hare: "On the accuracy of multiprocessor tracing

techniques" (Georgia Institute of Technology report GIT-CC-92-53, June 1993).

11. J. Kelly Flanagan, Brent E. Nelson, James K Archibald , Knut Grimsrud :

"Incomplete trace data and trace driven simulation" in Proceedings of the

International Workshop on Modeling, Analysis and Simulation of Computer and

Telecommunication Systems (MASCOTS SCS 1993), pp. 203-209.

12. Knut Grimsrud , James Archibald , Richard Frost, Brent Nelson, Kelly Flanagan:

"Estimation of simulation error due to trace inaccuracies" in IEEE Asilomar

Conference (Oct. 1992).

13. Anita Borg, R. E. Kessler, Georgia Lazana, David W. Wall : "Long address traces

from RISC machines: generation and analysis" in Western Research Laboratory

Research Report 89/14 (Sept. 1989).

14. Thomas Ball, James R. Larus: "Optimally profiling and tracing programs" in ACM

Transactions on Programming Languages and Systems (July 1994, Vol. 16 No. 4),

pp. 1319-1360.

40

15. A. Borg, R. E. Kessler, D. W. Wall : "Generation and Analysis of Very Long Address

Traces" in Proceedings of the Seventeenth International Symposium on Computer

Architecture (ACM 1990), pp. 270-279.

16. David A. Patterson, John L. Hennessy: Computer Architecture: A Quantitative

Approach (1996). Morgan Kaufmann Publishers, Inc.

17. K. Grimsrud , J. Archibald , M. Ripley, K. Flanagan, B. Nelson: "BACH: a

hardware monitor for tracing microprocessor-based systems" in Microprocessors and

Microsystems (October 1993, vol. 17 no. 6).

18.MIPS Computer Systems, Inc.: RISCompiler Languages Programmer's Guide

(1988).

19. Douglas W. Clark : "Cache performance in the VAX-11/780" in ACM Transactions

on Computer Systems (February 1983, vol. 1 no. 1), pp. 24-37.

20. Josep Torrellas, Anoop Gupta, John Hennessy: "Characterizing the caching and

synchronization performance of a multiprocessor operating system" in Proceedings of

the Fifth International Conference on Architectural Support for Programming

Languages and Operating Systems (ACM 1992), pp. 162-174.

21. J. Kelly Flanagan, Brent E. Nelson, James K Archibald , Knut Grimsrud : "BACH:

BYU Address Collection Hardware, the collection of complete traces" in Proceedings

of the Sixth International Conference on Modeling Techniques and Tools for

Computer Performance Evaluation (1992), pp. 128-137.

22. Emmett Witchel, Mendell Rosenblum: "Embra: fast and flexible machine

simulation" in Proceedings of the 1996 International Conference on Measurement

41

and Modeling of Computer Systems (Performance Evaluation Review, Special Issue,

May 1996, Vol. 24 No. 1).

23. Bob Cmelik, David Keppel: "Shade: a fast instruction-set simulator for execution

profiling" in Proceedings of the 1994 Conference on Measurement and Modeling of

Computer Systems, pp. 128-137.

24. Charlton D. Rose, J. Kelly Flanagan: "Constructing Instruction Traces from

Cache-filtered Address Traces (CITCAT)" in ACM's Computer Architecture News

(Dec. 1996).

25. David A. Patterson, John L. Hennessy: Computer Organization & Design: The

Hardware/Software Interface (1998). Morgan Kaufmann Publishers, Inc.

26. Joe Heinrich : MIPS R4000 Microprocessor User's Manual (1994). MIPS

Technologies, Inc.

42

